序号 名称 大小
试听
-
1
011第 5 章 随机性模式 下
25420849
-
2
012第 6 章 如果你拷问数据的时间足够长 上
19567330
-
3
013第 6 章 如果你拷问数据的时间足够长 中
21548039
-
4
014第 6 章 如果你拷问数据的时间足够长 下
23578902
-
5
015第 7 章 无所不包的“厨房水槽法” 上
15837880
-
6
016第 7 章 无所不包的“厨房水槽法” 下
13042987
-
7
017第 8 章 新瓶装旧酒
24210857
-
8
018第 9 章 先吃两片阿司匹林 上
17577009
-
9
019第 9 章 先吃两片阿司匹林 下
15451558
-
10
020第 10 章 完胜股市(上) 上部
20908143
在人工智能异常火热的今天,很多人认为我们生活在一个不可思议的历史时期,人工智能和大数据可能比工业革命更能改变人的一生。然而这种说法未免言过其实,我们的生活确实可能有所改变,但并非是朝好的方面发展。我们过于武断地认为计算机搜索和处理堆积如山的数据时不会出差错,但计算机只是擅长收集、储存和搜索数据,它们没有常识或智慧,不知道数字和词语的意思,无法评估数据库中内容的相关性和有效性,它们没有区分真数据、假数据和坏数据所需的人类判断力,没有分辨有理有据和虚假伪造的统计学模型所需的人类智能。
计算机挖掘大数据风行一时,但数据挖掘是人为而非智能,也是非常艰巨、危险的人工智能形式。数据挖掘先是通过大量的数据走势、相关关系来发现让我们内心愉悦却无实践价值的模型,然后创造理论来解释这些模型。作者通过“史密斯测试”和“得州神枪手谬误”等实例说明,如果你挖掘和拷问数据的时间够长、数量够大,你总能得到自己想要的结果,然而这是相关关系却并不是因果关系,只是自我选择偏好,并没有理论基础也没有实用价值。
在人工智能时代,我们对计算机的热爱不应该掩盖我们对其局限性的思考,真正的危险不是计算机比我们更聪明,而是我们认为计算机具有人类的智慧和常识,数据挖掘就是“知识发现”,从而信任计算机为我们做出重要决定。更多的计算能力和更多的数据并不意味着更多的智能,我们需要对人类的智慧有更多的信心。
ISBN : 9787521709957
定价 : 元